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1. BACKGROUND

Globally, the boreal forest is one of the most extensive biomes. Encompassing approximately 14.3 million
km?, or 21% of the world's forested land surface (Whittaker and Likins, 1975), it is estimated that it stores > 37% of
the total amount of carbon in the biosphere (Kasischke et al., 1995). An increasing body of research indicates that
high latitude continental regions (43°-65°) will be most vulnerable to large climatic perturbations resulting from
global warming (Mitchell et al., 1983; Sellerset al., 1996). These changesin climate are likely to result in changes
in the carbon, energy and water cycles of the boreal forest; however, the precise mechanisms and implications of
these changes are till not fully comprehended (Sellers et al. 1997). 1n 1993, the Boreal Ecosystem-Atmosphere
Study (BOREAS) was undertaken in the boreal forest of central Canadato improve our knowledge of the processes
involved in the fluxes of radiative energy, sensible heat, water, trace gases and CO, between this biome and the
troposphere. One of the primary objectives of BOREAS was to improve the parameterization and simulation
modeling of these interactions at multiple scales (Sellers et al. 1997). Land cover datais an essential parameter in
various BOREAS modeling efforts that seek to upscale fluxes from sub-regional to regional scales (Sellerset al.
1997; Steyaert et ., 1997). Additionally, land cover datais needed to improve remote sensing algorithms and study
fire disturbance (Steyaert et al., 1997). Thus, accurate and reliable boreal forest land cover data at the sub-area,
study area and regiona level iscritical for BOREAS flux modeling efforts.

At the regional and sub-regional scales, Steyaert et al. (1997) derived an AVHRR (1-km pixel resolution)
vegetation classification based on a combination of field observations and an unsupervised cluster analysis based on
NDVI. Hall et al. (1997) developed aLandsat TM physical based classification that uses canopy reflectance models
to classify vegetation types and biophysical parameters. These studies produced better results than those of solely
statistical methods, e.g. maximum likelihood; however, low accuracies for fen and wet conifers, two important land
cover typesin the boreal forest, were reported. Narrow-band airborne hyperspectral sensors, AVIRIS (224 spectral
bands) and the Compact Airborne Spectrographic Imager (CASI), provide the opportunity to explore different
expressions of vegetation such as reflectance vegetation indices and pigment concentration parameters that can be
used to improve the results of broadband sensors. Using hyperspectral CASI imagery, Zarco-Tejada and Miller
(1999) derived three red edge parameters and used them as inputs in an isodata unsupervised classification routine to
map vegetation types. With an overall accuracy of 61.2% and the ability to map the fen cover type, the study
provided important improvements over the TM physical classification. However, this technique was unable to
classify deciduous vegetation and differentiate between wet and dry conifers, some of the functionally distinct types
present in this ecosystem.

The primary objectives of our study were: (1) to improve vegetation classification of boreal forests for
modeling at the sub-regional scale; (2) to test the advantages of hyperspectral AVIRIS data over satellite
multispectral data (TM, AVHRR); (3) to explore alternative approaches to express land cover vegetation based on
pigment and water content; and (4) to test the robustness of these techniques across multiple seasons. Two different
methods of expressing pigment and water content (leaf- based vs. index-based) were explored and these results are
presented here.



2. MATERIALS& METHODS

AVIRIS 1994 imagery for three seasons, fall (September 16), spring (April 19) and summer (July 21) for
the BOREAS Southern Study Area, near Prince Albert, Saskatchewan (Figure 1) were converted to reflectance using
the atmospheric correction routine developed by Green et al. (1991). In BOREAS, at the sub-area scale, water
vapor, heat and CO, fluxes were measured using eddy correlation equipment installed on flux towers at two study
areas within the BOREAS modeling region (~500,000 kn?). These local measurements (~ 1 km?) have been linked
to aircraft measurements to derive fluxes at the regional scale (Steyard et al., 1997). Due to the importance of flux
towers to the overall BOREAS objectives, the AVIRIS images were selected to include flux tower sites. These
images also contained the major vegetation types representative of the BOREAS study region. The images were
georeferenced in ENVI 3.0 (Research Systems, Boulder, CO) using a panchromatic Landsat TM image as a base
map, obtained from the BOREAS Information System (BORIS) archive (Goddard Space Flight Center, Greenbelt,
Maryland). Two study areas were extracted: JP-FEN ("jack pine-fen"), where the dominant vegetation types were
Pinus banksiana (jack pine) and fen; and OBS ("old black spruce™), where the dominant species was Picea mariana
(black spruce) (Figure 1).

Figure1l. BOREAS Southern Study Area (SSA) and the sub-areas, old black spruce
(OBS)

SSA forest cover data from the Saskatchewan Environment and Resource Management, Forestry Branch-
Inventory Unit (SERM-FBIU), processed by BOREAS Staff Science team into binary raster files, were obtained
from BORIS (Gruszka, 1998). This classification was prepared using aerial photography coupled with field visits
and included 20 vegetation classes (Table 1). Landsat TM physical vegetation classification produced by BOREAS
staff science based on the methodology developed by Hall et al. (1997) was obtained as araster binary image from
the BORIS archive (Hall, 1999). Both the TM and SERM classifications were then reclassified to match the seven
ecologically significant land cover types outlined in Table 1. These seven classes were based on the needs of the
various BOREAS science teams, as described by Zarco-Tejada and Miller (1999).

We decided to represent land cover types based on two alternate methods of expressing pigment and water
content in vegetation. The first used a combination of leaf types representing varying mixtures of the principal
pigment groups present in photosynthetic vegetation and a linear spectral decomposition procedure, spectral mixture
analysis, to obtain the relative abundance of those leaf types (the “leaf-based approach”). The second used a
combination of several reflectance indices that provide information on pigment and water abundance (the “index-
based approach”). The products of these processes were then used as inputsin a supervised maximum likelihood
classification to distinguish land cover types.



Table 1. Reclassification of the SERM-FBIU and Landsat TM land cover classifications into seven ecologically
significant classes used in this study.

Maximum
SERM-FBIU TM Spectral Trajectories Likelihood AVIRIS
Classification Classification Classification
Class Class Class
White Spuce
Jack Pine Dry Conifer Dry Conifers
Black Spruce Wet Conifer
Spruce/Pine New Regeneration Conifer Wet Conifers
Tamarack Medium Age Regeneration Conifer
Mixed Spruce-Fir/Broadleaf
Mixed Jack Pine/Broadleaf Mixed Mixed
Mixed Broadleaf/Spruce-Fir (Conifer & Deciduous)
Mixed Broadleaf/Jack Pine
Deciduous
Aspen New Regeneration Deciduous Deciduous
Medium Age Regeneration Deciduous
Treed Muskeg
Clear Muskeg Fen Fen
Brushland
Clearing
Burn-over Disturbed
Disturbed, Cut or Burn Fire Blackened Disturbed
Disturbed/Jack Pine Regeneration
Experimental Area
Flooded Land
Water Water Water

2.1 Leaf-based Approach

Because pigment spectrain isolated extracts can differ markedly from those in the intact leaf, we decided to
model the landscape based on leaf spectra. Liquidambar styraciflua (sweetgum), a common street tree native to the
Eastern U.S., was chosen because |eaves of this species display all possible combinations of major plant pigment
groups (chlorophylls, carotenoids and anthocyanins). Thus, with this species, it was possible to obtain spectral
endmembers of leaf "types' representing varying pigment concentrations, including relatively pure spectra of each
of these pigments. Leaf spectrain the visible/NIR (400-1100 nm) for ten sweetgum leaf types, representing widely
varying levels of pigmentation, were collected using a portable spectrometer (Unispec, PP Systems, Haverhill, MA).
Figure 2 shows four representative spectra. The leaves were collected in the vicinity of the California State
University, Los Angeles campus in the fall of 1998. Additionally, 100 pixel-averaged soil and water spectra
obtained from the JP-FEN July 21 AVIRIS scene were added. The spectrawere interpolated to match 1994 AVIRIS
bands 13 — 32 and 35— 67 (489.67 —991.44 nm). The leaf spectra were then converted into an ENVI spectral
library and used asinput in alinear spectral mixture analysis (SMA) routine to extract the leaf endmember fractions
of those leaf types for the OBS and JP-FEN image cubes. The result of this procedure was a 12-band image cube
with each band representing one of the endmembers used in the SMA process. One image was created for each of
the endmembers used for the process and for each pixel avalue representing the fraction of that endmember was
produced.
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Figure 2. Leaf spectrafor four representative
Liquidambar styraciflua leaf types

exhibiting different concentrations of
chlorophyll, carotenoids and/or anthocyanins.

2.2 Index-based Approach

Seven reflectance indices were selected to characterize the physiological state of the vegetation
composition of the two study areas. These indices are indicators of pigment content, photosynthetic rates, canopy
structure or water content (Table 2) and their effectiveness has been widely explored at the leaf and canopy scales
(Gamon et a. 1992, 1997; Gamon and Surfus, 1999; Gao, 1996; Gitelson and Merzylak, 1994; Pefiuelas et a., 1994,
1995; Pefiuelas and Filella, 1998). Using the original 224-channel AVIRIS image cube for the two areas, the
reflectance indices were calculated. The formulas for these indices are provided in Table 2. Figure 3 gives a visual
representation of the information in Table 2. AVIRIS wavel engths were interpolated to obtain the exact bands
employed in the index formulas using linear interpolation.

Table 2. Seven reflectance vegetation indices calculated from the original AVIRIS image cube and used in the

maximum likelihood analysis to derive land cover types.

INDEX FUNCTION FORMULATION REFERENCE
Modified normalized Leaf chlorophyll content (R750-R705)/(R750+R705) Gitelson and
Difference vegetation Merzlyak (1996)
index (MNDVI)

Red/green ratio Anthocyanins/chlorophyl| Re00-699/ Rs00-509 Gamon and Surfus
(1999)
Photochemical reflectance Xanthophyll cycle (Rs31-Rs70)/(Rs31+Rs70) | Gamon and Surfus
index (PRI) pigment activity (1999)
Water band index (WBI) Leaf water content Rgoo/Ro7o Pefiuelas et al.
(1997)
Normalized difference Leaf water content (R357' R1241)/(R857'R1241) Gao (1993)
water index (NDWI)
Summed green reflectance Green vegetation cover 599 Unpublished
Rn
n=500
Normalized difference Green vegetation cover (Regos-Re75)/(Reos*Re7s) Modified from
vegetation index (NDVI) Tucker (1979)
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Figure 3. Jack Pine (Pinus banksiana) spectrum from AVIRIS
illustrating the wavebands used for the reflectance indices
classification.

A set of training pixels was selected to be used in a maximum likelihood classification routine. The
selection was based on the 20 vegetation types from the SERM-FBIU land cover classeslisted in Table 1. A region
of interest (ROI) of 100 pixels per cover type were chosen for the analysis; however, for the burn-over,
disturbed/jack pine regeneration, experimental area and flooded land classes, this was not possible because of
limited spatial extent. To simplify the analysis, we decided to combine them into a single "disturbed" cover class.
Pixels from the above mentioned classes in addition to the disturbed, cut or burn cover type were selected for the
disturbed training pixel set. In order to achieve a more statistically representative training set, sample pixels were
randomly selected across the entire image. To minimize over-representation and under-representation of large and
small cover types, respectively, the number of pixelsfor all classes were kept equal (Richards, 1995). Both the leaf-
type and index image cubes for the three seasons were classified using maximum likelihood (Richards, 1995). So
that all pixelswould be classified, no threshold value was placed on the process. The resulting images were
reclassified into the seven BOREAS cover types.

Accuracy of the AVIRIS classifications was assessed using a second set of pixels selected across the image.
The 17-meter-pixel AVIRIS mosaics for the two study areas were re-sampled to 30 meter-pixel images using a 1%
degree polynomial nearest neighbor warping routine (Richards, 1995). This allowed comparisons to the SERM-
FBIU and spectral trajectories Landsat TM classifications. A region of interest (ROI) of 700 pixels, 100 per cover
type, was selected from the SERM-FBIU reclassified image. Careful consideration was taken to avoid selecting
pixels used in the maximum likelihood procedure. The test pixels were subsequently overlaid on the leaf-type and
index-based maximum likelihood images and their labels were checked against those of SERM.

3. RESULTS

The results of the two AVIRIS classification methods for JP-FEN and OBS for summer (July 21) are
presented in Figure 4, panels C & G (leaf-based) and D & H (index-based). A visual comparison of both methods to
the SERM and TM classifications indicates that both AVIRIS classification methods tend to correspond better to the
SERM-FBIU than doesthe TM classification. Table 3 presents a summary of the results of the contingency tables
developed for the AVIRIS maximum likelihood classifications. The table displays both “user’s accuracy” (the total
number of correctly classified pixels of aclass of all the pixels classified as that class), and “overall accuracy” (the
total number of pixelsfor all classes correctly classified).



o Flux Tower

Il et Conifers
[ Dry Conifers
| Mixed

[ Deciduous
[ Fen

I Disturbed
I \Water

Figure 4. JP-FEN (jack pine-fen) site (top panels) and OBS (old black spruce) site (bottom panels). For the evaluation of
classification accuracy, theSERM-FBIU (panels A & E), obtained from the BOREAS Information System (BORIS), was
assumed to be true. The Landsat TM physical classification (panels B & F) was obtained from BORIS. The AVIRIS
|eaf-based (panels C & G) and index-based (panels D & H) classifications were derived from the July 21, 1994, overflight.



Accuracies varied with method, AVIRIS scene, season, and cover type, asindicated in Table 3. Of thetwo
methods, slightly higher accuracies were obtained with the leaf-based method (Figure 4, panelsC & G) (overall
accuracy 66.6 - 80.1% for the leaf-based method, vs. 56.6 —73.3% for the index-based method). Of the two scenes,
higher accuracies were obtained with the JP-Fen scene (overall accuracy 72.7-80.1% for the JP-Fen scene vs. 56.6-
75.6 for the OBS scene).  Season also had a dlight effect on accuracy, but this effect was not consistent across
methods and scenes. For example, using the leaf-based method for the JP-Fen scene, spring and fall yielded dightly
higher overall accuracies than summer (80 —80.1% for spring and fall vs. 73.7% for summer). However, the same
method for the OBS scene yielded the highest overall accuracy in summer (75.6%). Within a scene and method,
accuracies varied with cover type. Not surprisingly, the highest user’ s accuracy were obtained with water (99-
100%). Of the different vegetation types, the lowest user’s accuracies were obtained with the mixed class (e.g., 47.2
- 62.6 % for JP Fen using the leaf-based method). On the other hand, the other vegetation classes all yielded better
results, with user accuracies ranging as high as 91.4% (deciduous class for JP Fen in fall, using the leaf-based
method).

A comparison of the AVIRIS-based classification methods to earlier Landsat TM classifications (Hall et
al., 1997) reveaed substantial improvements over these previous classifications. With Landsat TM, overall
accuracies for our two study regions were 54.7% (JP-Fen) and 44.9% (OBS) (Table 4; Figure 4 panelsB & F). By
contrast, AVIRIS imagery, using even the weakest, index-based method, yielded higher overall accuracy values
(72.7 —73.3% for JP-Fen, and 56.6 — 68% for OBS, depending upon season) (Table 3). Using the stronger, |eaf-
based method, overall accuracies were even higher (73.7 - 80.1% for JP-Fen, and 66.6 - 75.6% for OBS). Thus,
regardless of location, method, or season, AVIRIS imagery yielded markedly better cover classifications than other
standard methods based on Landsat TM.

Table 3. Summary of the contingency matrix results for the AVIRIS leaf-type and index based maximum
likelihood classifications for JP-FEN and OBS for the three study seasons. The original matrices were
derived using a 700-pixel sample, 100 per cover type.

AVIRIS Maximum Likelihood Classifications
JP-FEN OBS
Spring Summer Fall Spring  Summer Fall
LEAF BASED

User’s Accuracies (%)
Wet Conifers 75.7 73.9 80.2 58.1 66.1 52.4
Dry Conifers 74.5 81.9 86.4 67.7 72.5 77.3
Mixed 62.6 47.2 55 52.7 51 41.8
Deciduous 85.5 90.9 91.4 89.8 82.9 69.6
Fen 83.3 65.9 87.9 74.3 80.6 82
Disturbed 83.2 79.8 73.1 85.8 91.3 84.8
Water 100 100 100 100 100 100
Overall Accuracy (%) 80.1 73.7 80 72.6 75.6 66.6
INDEX BASED
User’s Accuracies (%)
Wet Conifers 69.2 70.2 77.8 56.9 56.7 57.4
Dry Conifers 70.4 73 63.6 54.3 75 31
Mixed 50.9 52.5 45.2 43.3 46.1 35.4
Deciduous 79.3 90 94.9 62.5 90.5 38.2
Fen 74.3 74.4 80 79.3 65.1 82.7
Disturbed 69.7 67.8 76.7 86.9 59.9 58
Water 99 100 100 100 100 100
Overall Accuracy (%) 72.7 73.1 73.3 66.9 68 56.6




Table4. Summary of the contingency matrix results for the Landsat TM physical classification for JP-FEN and
OBS. This classification was produced using a September 9, 1994 image. The original matrices were
derived using a 700-pixel sample, 100 per cover type.

LANDSAT TM SPECTRAL TRAJECTORIES
JP-FEN OBS
User's Accuracies (%)
Wet Conifers 40.0 28.6
Dry Conifers 72.7 50.0
Mixed 29.9 47.4
Deciduous 46.3 30.0
Fen 49.4 75.8
Disturbed 100.0 100.0
Water 99.0 100.0
Overall Accuracy (%) 54.7 44.9

4. DISCUSSION

Both techniques presented in this work offer improvements over other vegetation cover products for this
region. Thisis not surprising, considering they both make use of the rich information content present in
hyperspectral data. The slightly better results using the leaf-based method may be due to the fact that the leaf-based
method uses more of the spectral information present in the AVIRIS imagery than the index-based method. Because
it uses all spectral information within the 489.67 to 991.44 nm region, the leaf-based method appears to have more
power to distinguish cover classes than the index-based method, which is based on a more limited number of
spectral bands. On the other hand, the index method has the potential advantage that it also yields index images that
are themselves of functional significance. For example, using a simple combination of the NDVI and PRI indices, it
is possible to derive amap of photosynthetic fluxes for this region (Rahman et al., 2000).

With AVIRIS, the availability of spectral information at 10 nm intervals provides the opportunity to
formulate and test narrow-band indices that have been previously developed at leaf and canopy scales. This
potential is simply not available with multispectral sensors such as TM and AVHRR. Previous applications of these
indicesto AVIRIS images have been limited (e.g. Gamon et a., 1995); in this study when applied in concert to
properly calibrated and atmospherically-corrected AVIRIS imagery, they are clearly able to distinguish different
cover types. A similar conclusion has recently been reported with AVIRIS data from the Santa Monica Mountains
in southern California (Gamon and Qiu, 1999).

Both index-based and | eaf-based methods rely on the presence of universal water and pigment absorption
features that are fundamental to all vegetation, regardless of type, location, or season. Thus, further development of
the approaches presented here should provide robust methods for mapping cover types. The good results regardless
of cover type and season, including spring dates when snow was still present, support our conclusion that these
methods may have wide applicability. At present, the limitation of these methods is that they both require some
degree of information about the identity of surface types astraining sets. Some knowledge of how pigment
expression or index values vary with cover type is needed for these methods to work. Thistype of informationis
only now beginning to become available for limited geographic regions (e.g. Gamon and Qiu, 1999). Thus, at
present, a strong limitation to the broad applicability of these methodsisthe limited availability and coverage of
hyperspectral sensors and their properly calibrated and atmospherically corrected products.

The results of the accuracy assessment for the TM classification undertaken in this work indicate values
lower than those provided by the BORI S staff scientistsin their experimental report in which an overall accuracy of
83% for the entire TM scene was noted (Hall, 1999). In this study, using our sample pixels, the TM classification’s



overall accuracy was only 54.7% for the JP-FEN study area and 44.9% for OBS. According to our analysis, most of
the error in the TM classification arose from the misclassification of fen as wet conifers and of dry conifers as wet
conifers. Another source of error for this classification was the misclassification of mixed stands (conifers and
deciduous) as deciduous vegetation.

Asdiscussed earlier, modeling the potential of the boreal forest to become either a carbon sink or source
demands an accurate knowledge of the distribution of the different cover classes present in this ecosystem (Sellers et
al. 1997; Steyaert et al., 1997). The TM physical classification developed by the BOREAS Staff Science team has
been an invaluable source of information in the modeling of fluxesin the boreal forests of Canada at the sub-
regional scale (BOREAS annual meeting 1999). Nevertheless, asHall et a. (1997) acknowledged, this
classification had difficulty identifying important cover types such as fen, an important source of methane in this
ecosystem, and wet and dry conifers. According to the results of our study study, both leaf- and index-based
methods show noticeable improvementsin overall accuracy as well asin the identification of those cover types.
Improved mapping of the functionally distinct cover types could yield improvements in estimates of CO, and
methane flux for thisregion. Aninitia attempt to map CO, fluxes from AVIRIS imagery has been presented by
Rahman et al. (2000) in this volume.

5. CONCLUSIONS

By transforming an AVIRIS image cube into reflectance index and leaf type maps and using them as inputs
in a maximum likelihood routine, vegetation types in the boreal forests of Canada have been correctly classified
with overall scene accuracy rates up to 80.1%. These results are notably higher than the TM spectral trajectory
classification, used as a parameter in numerous flux models in the BOREAS project, as well as the more recent red-
edge based classification by Zarco-Tejada and Miller (1999). These two new classification methods were able to
classify fen, wet conifer and deciduous classes at higher accuracy than the previously mentioned classifications.
Additionally, it should be noted that our accuracy assessments were based on the SERM-FBIU vegetation maps,
which were derived from field observation and aerial photography, with their own inherent errors; consequently, we
believe actual classification accuracies may be somewhat higher than reported here. The results indicate that
pigment and water content expressions can be applied to detect functionally significant features in the landscape.
Further investigation is focusing on developing more fundamental, quantitative derivations of pigment and water
content at the landscape level for the purpose of modeling carbon and water vapor fluxes.
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